1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
| ''' Decoder-Only transformer
pre layerNorm '''
import os import torch import torch.nn as nn import torch.nn.functional as F import requests import tiktoken import math
batch_size = 4 context_len = 16 d_model = 64 num_blocks = 8 num_heads = 4 learning_rate = 1e-3 dropout = 0.1
max_iters = 5000 eval_interval = 100 eval_iters = 100 device = 'cuda' if torch.cuda.is_available() else 'cpu' TORCH_SEED = 1337 torch.manual_seed(TORCH_SEED)
if not os.path.exists('/home/lizy/graduate/Transformer_learning/sales_textbook.txt'): url = 'https://huggingface.co/datasets/goendalf666/sales-textbook_for_convincing_and_selling/raw/main/sales_textbook.txt' with open('/home/lizy/graduate/Transformer_learning/sales_textbook.txt','wb') as f: f.write(requests.get(url).content) with open('/home/lizy/graduate/Transformer_learning/sales_textbook.txt','r', encoding='utf-8') as f: text = f.read()
encoding = tiktoken.get_encoding("cl100k_base") vocab_size = encoding.n_vocab
tokenized_text = encoding.encode(text)
tokenized_text=torch.tensor(tokenized_text,dtype=torch.long,device=device)
train_idex = int(len(tokenized_text) * 0.9) train_data = tokenized_text[:train_idex] valid_data = tokenized_text[train_idex:]
class FeedforwardNetwork(nn.Module): def __init__(self,d_model,d_ff): super(FeedforwardNetwork,self).__init__() self.linear1 = nn.Linear(d_model,d_ff) self.ReLU = nn.ReLU() self.linear2 = nn.Linear(d_ff,d_model) self.dropout = nn.Dropout(dropout)
def forward(self,x): x=self.linear1(x) x=self.ReLU(x) x=self.linear2(x) x=self.dropout(x)
return x
class MultiHeadAttention(nn.Module): def __init__(self): super().__init__() self.Wqkv = nn.Linear(d_model,d_model*3) self.projection_layer = nn.Linear(d_model,d_model) self.dropout = nn.Dropout(dropout)
def forward(self,x): B,T,C = x.shape qkv = self.Wqkv(x).reshape(B,T,3,num_heads,C // num_heads) q,k,v = qkv.unbind(dim=2) q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) attn = (q @ k.transpose(-2, -1)) / math.sqrt(C // num_heads) mask = torch.tril(torch.ones(T, T)).to(x.device) attn = attn.masked_fill(mask == 0, float('-inf')) attn = F.softmax(attn, dim=-1) attn = self.dropout(attn)
out = (attn @ v).transpose(1, 2).contiguous().view(B, T, C) return self.projection_layer(out) class TransformerBlock(nn.Module): def __init__(self): super().__init__() self.multi_head_attention_layer = MultiHeadAttention() self.ffn = FeedforwardNetwork(d_model,d_model*4) self.layer_norm_1=nn.LayerNorm(d_model) self.layer_norm_2=nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout) def forward(self,x): x = x + self.dropout(self.multi_head_attention_layer(self.layer_norm_1(x))) x = x + self.dropout(self.ffn(self.layer_norm_2(x))) return x
class TransformerLanguageModel(nn.Module): def __init__(self): super().__init__() self.token_embedding_lookup_table = nn.Embedding(vocab_size, d_model)
self.transformer_blocks = nn.Sequential(*( [TransformerBlock() for _ in range(num_blocks)] + [nn.LayerNorm(d_model)] ))
self.language_model_out_linear_layer = nn.Linear(d_model,vocab_size)
self.register_buffer('position_embedding', self._create_position_embedding())
def _create_position_embedding(self):
position_encoding_lookup_table = torch.zeros(context_len,d_model) position = torch.arange(0,context_len,dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) position_encoding_lookup_table[:, 0::2] = torch.sin(position * div_term) position_encoding_lookup_table[:, 1::2] = torch.cos(position * div_term)
return position_encoding_lookup_table
def forward(self,idx,targets=None): B , T = idx.shape position_embedding = self.position_embedding[:T, :].to(device)
x = self.token_embedding_lookup_table(idx) + position_embedding x = self.transformer_blocks(x)
logits = self.language_model_out_linear_layer(x)
if targets is not None: B, T, C = logits.shape logits_reshaped = logits.view(B * T, C) targets_reshaped = targets.view(B * T) loss = F.cross_entropy(input=logits_reshaped, target=targets_reshaped) else: loss = None return logits, loss
def generate(self, idx, max_new_tokens, temperature=0.8, top_k=50): for _ in range(max_new_tokens): idx_crop = idx[:, -context_len:] if idx.size(1) > context_len else idx logits, _ = self(idx_crop) logits = logits[:, -1, :] / temperature if top_k is not None: v, _ = torch.topk(logits, min(top_k, logits.size(-1))) logits[logits < v[:, [-1]]] = float('-inf') probs = F.softmax(logits, dim=-1) idx_next = torch.multinomial(probs, num_samples=1) idx_next = torch.clamp(idx_next, 0, vocab_size - 1) idx = torch.cat((idx, idx_next), dim=1)
return idx
model = TransformerLanguageModel() model = model.to(device)
def get_batch(split): data = train_data if split == 'train' else valid_data idxs = torch.randint(low=0, high=len(data) - context_len, size=(batch_size,)) x = torch.stack([data[idx:idx + context_len] for idx in idxs]).to(device) y = torch.stack([data[idx + 1:idx + context_len + 1] for idx in idxs]).to(device) return x, y
@torch.no_grad() def estimate_loss(): out = {} model.eval() for split in ['train', 'valid']: losses = torch.zeros(eval_iters) for k in range(eval_iters): x_batch, y_batch = get_batch(split) logits, loss = model(x_batch, y_batch) losses[k] = loss.item() out[split] = losses.mean() model.train() return out
optimizer = torch.optim.AdamW(params=model.parameters(), lr=learning_rate) tracked_losses = list() for step in range(max_iters): if step % eval_interval == 0 or step == max_iters - 1: losses = estimate_loss() tracked_losses.append(losses) print('Step:', step, 'Training Loss:', round(losses['train'].item(), 3), 'Validation Loss:', round(losses['valid'].item(), 3))
xb, yb = get_batch('train') logits, loss = model(xb, yb) optimizer.zero_grad(set_to_none=True) loss.backward() optimizer.step()
torch.save(model.state_dict(), './model_para/model_pre-ckpt.pt')
model.eval() start = 'The salesperson' start_ids = encoding.encode(start) x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...]) y = model.generate(x, max_new_tokens=100) print('---------------')
try: generated_text = encoding.decode(y[0].tolist()) except KeyError as e: print(f"解码时遇到无效token,尝试忽略: {e}") valid_tokens = [] for token in y[0].tolist(): try: if 0 <= token < vocab_size: valid_tokens.append(token) except: continue generated_text = encoding.decode(valid_tokens)
print(encoding.decode(y[0].tolist())) print('---------------')
|